包详细信息

@stdlib/math-base-special-kernel-tan

stdlib-js38.2kApache-2.00.2.3

Compute the tangent of a double-precision floating-point number on [-π/4, π/4].

stdlib, stdmath, mathematics, math

自述文件

<summary> About stdlib... </summary>

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

kernelTan

[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]

Compute the [tangent][tangent] of a double-precision floating-point number on [-π/4, π/4].

## Installation bash npm install @stdlib/math-base-special-kernel-tan
## Usage javascript var kernelTan = require( '@stdlib/math-base-special-kernel-tan' ); #### kernelTan( x, y, k ) Computes the [tangent][tangent] of a double-precision floating-point number on [-π/4, π/4]. javascript var out = kernelTan( 3.141592653589793/4.0, 0.0, 1 ); // returns ~1.0 out = kernelTan( 3.141592653589793/6.0, 0.0, 1 ); // returns ~0.577 out = kernelTan( 0.664, 5.288e-17, 1 ); // returns ~0.783 If k = 1, the function returns tan(x+y). To return the negative inverse -1/tan(x+y), set k = -1. javascript var out = kernelTan( 3.141592653589793/4.0, 0.0, -1 ); // returns ~-1.0 If either x or y is NaN, the function returns NaN. javascript var out = kernelTan( NaN, 0.0, 1 ); // returns NaN out = kernelTan( 3.0, NaN, 1 ); // returns NaN out = kernelTan( NaN, NaN, 1 ); // returns NaN
## Notes - For increased accuracy, the number for which the [tangent][tangent] should be evaluated can be supplied as a [double-double number][double-double-arithmetic] (i.e., a non-evaluated sum of two [double-precision floating-point numbers][ieee754] x and y). - As components of a [double-double number][double-double-arithmetic], the two [double-precision floating-point numbers][ieee754] x and y must satisfy
Inequality for the two components of a double-double number.
where ulp stands for [units in the last place][ulp].
## Examples javascript var linspace = require( '@stdlib/array-base-linspace' ); var binomial = require( '@stdlib/random-base-binomial' ).factory; var PI = require( '@stdlib/constants-float64-pi' ); var kernelTan = require( '@stdlib/math-base-special-kernel-tan' ); var x = linspace( -PI/4.0, PI/4.0, 100 ); var rbinom = binomial( 1, 0.5 ); var descr; var i; var k; for ( i = 0; i < x.length; i++ ) { k = rbinom(); descr = ( k === 1 ) ? 'tan(%d) = %d' : '-1/tan(%d) = %d'; console.log( descr, x[ i ], kernelTan( x[ i ], 0.0, k ) ); }

## C APIs
### Usage c #include "stdlib/math/base/special/kernel_tan.h" #### stdlib_base_kernel_tan( x, y, k) Computes the [tangent][tangent] of a double-precision floating-point number on [-π/4, π/4]. c double out = stdlib_base_kernel_tan( 3.141592653589793/4.0, 0.0, 1 ); // returns ~1.0 out = stdlib_base_kernel_tan( 3.141592653589793/6.0, 0.0, 1 ); // returns ~0.577 The function accepts the following arguments: - x: [in] double input value (in radians, assumed to be bounded by ~pi/4 in magnitude). - y: [in] double tail of x. - k: [in] int32_t indicates whether tan(x+y) (if k = 1) or -1/tan(x+y) (if k = -1) is returned. c double stdlib_base_kernel_tan( const double x, const double y, const int32_t k );
### Notes - For increased accuracy, the number for which the [tangent][tangent] should be evaluated can be supplied as a [double-double number][double-double-arithmetic] (i.e., a non-evaluated sum of two [double-precision floating-point numbers][ieee754] x and y).
### Examples c #include "stdlib/math/base/special/kernel_tan.h" #include <stdio.h> int main( void ) { const double x[] = { -0.7853981633974483, -0.6108652381980153, -0.4363323129985824, -0.26179938779914946, -0.08726646259971649, 0.08726646259971649, 0.26179938779914935, 0.43633231299858233, 0.6108652381980153, 0.7853981633974483 }; double out; int i; for ( i = 0; i < 10; i++ ) { out = stdlib_base_kernel_tan( x[ i ], 0.0, 1 ); printf( "tan(%lf) = %lf\n", x[ i ], out ); } }

* ## See Also - [@stdlib/math-base/special/kernel-cos][@stdlib/math/base/special/kernel-cos]: compute the cosine of a double-precision floating-point number on [-π/4, π/4]. - [@stdlib/math-base/special/kernel-sin][@stdlib/math/base/special/kernel-sin]: compute the sine of a double-precision floating-point number on [-π/4, π/4]. - [@stdlib/math-base/special/tan][@stdlib/math/base/special/tan]: evaluate the tangent of a number.
* ## Notice This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more. For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib]. #### Community [![Chat][chat-image]][chat-url] --- ## Copyright Copyright © 2016-2024. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/math-base-special-kernel-tan.svg [npm-url]: https://npmjs.org/package/@stdlib/math-base-special-kernel-tan [test-image]: https://github.com/stdlib-js/math-base-special-kernel-tan/actions/workflows/test.yml/badge.svg?branch=v0.2.3 [test-url]: https://github.com/stdlib-js/math-base-special-kernel-tan/actions/workflows/test.yml?query=branch:v0.2.3 [coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/math-base-special-kernel-tan/main.svg [coverage-url]: https://codecov.io/github/stdlib-js/math-base-special-kernel-tan?branch=main [chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg [chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im [stdlib]: https://github.com/stdlib-js/stdlib [stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors [umd]: https://github.com/umdjs/umd [es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules [deno-url]: https://github.com/stdlib-js/math-base-special-kernel-tan/tree/deno [deno-readme]: https://github.com/stdlib-js/math-base-special-kernel-tan/blob/deno/README.md [umd-url]: https://github.com/stdlib-js/math-base-special-kernel-tan/tree/umd [umd-readme]: https://github.com/stdlib-js/math-base-special-kernel-tan/blob/umd/README.md [esm-url]: https://github.com/stdlib-js/math-base-special-kernel-tan/tree/esm [esm-readme]: https://github.com/stdlib-js/math-base-special-kernel-tan/blob/esm/README.md [branches-url]: https://github.com/stdlib-js/math-base-special-kernel-tan/blob/main/branches.md [tangent]: https://en.wikipedia.org/wiki/Tangent [double-double-arithmetic]: https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic [ieee754]: https://en.wikipedia.org/wiki/IEEE_floating_point [ulp]: https://en.wikipedia.org/wiki/Unit_in_the_last_place [@stdlib/math/base/special/kernel-cos]: https://www.npmjs.com/package/@stdlib/math-base-special-kernel-cos [@stdlib/math/base/special/kernel-sin]: https://www.npmjs.com/package/@stdlib/math-base-special-kernel-sin [@stdlib/math/base/special/tan]: https://www.npmjs.com/package/@stdlib/math-base-special-tan