We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
isSameValuef
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Test whether two single-precision complex floating-point numbers are the same value.
bash
npm install @stdlib/complex-float32-base-assert-is-same-value
javascript
var isSameValuef = require( '@stdlib/complex-float32-base-assert-is-same-value' );
#### isSameValuef( z1, z2 )
Tests whether two single-precision complex floating-point numbers are the same value.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var z1 = new Complex64( 5.0, 3.0 );
var z2 = new Complex64( 5.0, 3.0 );
var out = isSameValuef( z1, z2 );
// returns true
In contrast to the strict equality operator ===
, the function distinguishes between +0
and -0
and treats NaNs
as the same value.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var z1 = new Complex64( NaN, NaN );
var z2 = new Complex64( NaN, NaN );
var out = isSameValuef( z1, z2 );
// returns true
z1 = new Complex64( -0.0, 0.0 );
z2 = new Complex64( 0.0, -0.0 );
out = isSameValuef( z1, z2 );
// returns false
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var isSameValuef = require( '@stdlib/complex-float32-base-assert-is-same-value' );
var z1 = new Complex64( 5.0, 3.0 );
var z2 = new Complex64( 5.0, 3.0 );
var out = isSameValuef( z1, z2 );
// returns true
z1 = new Complex64( -5.0, -3.0 );
z2 = new Complex64( 5.0, 3.0 );
out = isSameValuef( z1, z2 );
// returns false
z1 = new Complex64( NaN, 3.0 );
z2 = new Complex64( NaN, 3.0 );
out = isSameValuef( z1, z2 );
// returns true
c
#include "stdlib/complex/float32/base/assert/is_same_value.h"
#### stdlib_base_complex64_is_same_value( z1, z2 )
Tests whether two single-precision complex floating-point numbers are the same value.
c
#include "stdlib/complex/float32/ctor.h"
#include <stdbool.h>
stdlib_complex64_t z1 = stdlib_complex64( 5.0f, 2.0f );
stdlib_complex64_t z2 = stdlib_complex64( 5.0f, 2.0f );
bool v = stdlib_base_complex64_is_same_value( z1, z2 );
The function accepts the following arguments:
- z1: [in] stdlib_complex64_t
first single-precision complex floating-point number.
- z2: [in] stdlib_complex64_t
second single-precision complex floating-point number.
c
bool stdlib_base_complex64_is_same_value( const stdlib_complex64_t z1, const stdlib_complex64_t z2 );
c
#include "stdlib/complex/float32/base/assert/is_same_value.h"
#include "stdlib/complex/float32/ctor.h"
#include <stdbool.h>
#include <stdio.h>
int main( void ) {
const stdlib_complex64_t z[] = {
stdlib_complex64( 5.0f, 2.0f ),
stdlib_complex64( -2.0f, 1.0f ),
stdlib_complex64( 0.0f, -0.0f ),
stdlib_complex64( 0.0f/0.0f, 0.0f/0.0f )
};
bool v;
int i;
for ( i = 0; i < 4; i++ ) {
v = stdlib_base_complex64_is_same_value( z[ i ], z[ i ] );
printf( "Same value? %s\n", ( v ) ? "True" : "False" );
}
}