We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Complex64Array
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
64-bit complex number array.
bash
npm install @stdlib/array-complex64
javascript
var Complex64Array = require( '@stdlib/array-complex64' );
#### Complex64Array()
Creates a 64-bit complex number array.
javascript
var arr = new Complex64Array();
// returns <Complex64Array>
#### Complex64Array( length )
Creates a 64-bit complex number array having a specified length
.
javascript
var arr = new Complex64Array( 10 );
// returns <Complex64Array>
var len = arr.length;
// returns 10
#### Complex64Array( complexarray )
Creates a 64-bit complex number array from another complex number array.
javascript
var arr1 = new Complex64Array( [ 1.0, -1.0, 2.0, -2.0 ] ); // [ re, im, re, im ]
// returns <Complex64Array>
var arr2 = new Complex64Array( arr1 );
// returns <Complex64Array>
var len = arr2.length;
// returns 2
#### Complex64Array( typedarray )
Creates a 64-bit complex number array from a [typed array][@stdlib/array/typed] containing interleaved real and imaginary components.
javascript
var Float32Array = require( '@stdlib/array-float32' );
var buf = new Float32Array( [ 1.0, -1.0, 2.0, -2.0 ] ); // [ re, im, re, im ]
// returns <Float32Array>[ 1.0, -1.0, 2.0, -2.0 ]
var arr = new Complex64Array( buf );
// returns <Complex64Array>
var len = arr.length;
// returns 2
#### Complex64Array( obj )
Creates a 64-bit complex number array from an array-like object or iterable.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
// From an array of interleaved real and imaginary components:
var arr1 = new Complex64Array( [ 1.0, -1.0, 2.0, -2.0 ] );
// returns <Complex64Array>
var len = arr1.length;
// returns 2
// From an array containing complex numbers:
var buf = [ new Complex64( 1.0, -1.0 ), new Complex64( 2.0, -2.0 ) ];
var arr2 = new Complex64Array( buf );
len = arr2.length;
// returns 2
#### Complex64Array( buffer[, byteOffset[, length]] )
Returns a 64-bit complex number array view of an [ArrayBuffer
][@stdlib/array/buffer].
javascript
var ArrayBuffer = require( '@stdlib/array-buffer' );
var buf = new ArrayBuffer( 240 );
var arr1 = new Complex64Array( buf );
// returns <Complex64Array>
var len = arr1.length;
// returns 30
var arr2 = new Complex64Array( buf, 8 );
// returns <Complex64Array>
len = arr2.length;
// returns 29
var arr3 = new Complex64Array( buf, 8, 20 );
// returns <Complex64Array>
len = arr3.length;
// returns 20
### Properties
#### Complex64Array.BYTES_PER_ELEMENT
Static property returning the size (in bytes) of each array element.
javascript
var nbytes = Complex64Array.BYTES_PER_ELEMENT;
// returns 8
#### Complex64Array.name
Static property returning the constructor name.
javascript
var str = Complex64Array.name;
// returns 'Complex64Array'
#### Complex64Array.prototype.buffer
Pointer to the underlying data buffer.
javascript
var arr = new Complex64Array( 2 );
// returns <Complex64Array>
var buf = arr.buffer;
// returns <ArrayBuffer>
#### Complex64Array.prototype.byteLength
Size (in bytes) of the array.
javascript
var arr = new Complex64Array( 10 );
// returns <Complex64Array>
var nbytes = arr.byteLength;
// returns 80
#### Complex64Array.prototype.byteOffset
Offset (in bytes) of the array from the start of its underlying ArrayBuffer
.
javascript
var ArrayBuffer = require( '@stdlib/array-buffer' );
var arr = new Complex64Array( 10 );
// returns <Complex64Array>
var offset = arr.byteOffset;
// returns 0
var buf = new ArrayBuffer( 240 );
arr = new Complex64Array( buf, 64 );
// returns <Complex64Array>
offset = arr.byteOffset;
// returns 64
#### Complex64Array.prototype.BYTES_PER_ELEMENT
Size (in bytes) of each array element.
javascript
var arr = new Complex64Array( 10 );
// returns <Complex64Array>
var nbytes = arr.BYTES_PER_ELEMENT;
// returns 8
#### Complex64Array.prototype.length
Number of array elements.
javascript
var arr = new Complex64Array( 10 );
// returns <Complex64Array>
var len = arr.length;
// returns 10
### Methods
#### Complex64Array.from( src[, clbk[, thisArg]] )
Creates a new 64-bit complex number array from an array-like object or an iterable.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
// Create an array from interleaved real and imaginary components:
var arr = Complex64Array.from( [ 1.0, -1.0 ] );
// returns <Complex64Array>
var len = arr.length;
// returns 1
// Create an array from an array of complex numbers:
arr = Complex64Array.from( [ new Complex64( 1.0, -1.0 ) ] );
// returns <Complex64Array>
len = arr.length;
// returns 1
The iterator returned by an iterable must return either a complex number or an array-like object containing a real and imaginary component.
javascript
var ITERATOR_SYMBOL = require( '@stdlib/symbol-iterator' );
var Float32Array = require( '@stdlib/array-float32' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var iter;
var arr;
var len;
var re;
var im;
var z;
// Define a function which returns an iterator protocol-compliant object...
function iterable() {
var buf = new Float32Array( 2 );
var i = 0;
return {
'next': next
};
function next() {
i += 1;
if ( i < 3 ) {
// Reuse allocated memory...
buf[ 0 ] = i;
buf[ 1 ] = -i;
return {
'value': buf
};
}
return {
'done': true
};
}
}
if ( ITERATOR_SYMBOL === null ) {
console.error( 'Environment does not support iterables.' );
} else {
// Create an iterable:
iter = {};
iter[ ITERATOR_SYMBOL ] = iterable;
// Generate a complex number array:
arr = Complex64Array.from( iter );
// returns <Complex64Array>
len = arr.length;
// returns 2
z = arr.get( 0 );
// returns <Complex64>
re = realf( z );
// returns 1.0
im = imagf( z );
// returns -1.0
}
To invoke a function for each src
value, provide a callback function. If src
is an iterable or an array-like object containing complex numbers, the callback must return either a complex number
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function map( z ) {
return new Complex64( realf(z)*2.0, imagf(z)*2.0 );
}
// Create a source array:
var src = [ new Complex64( 1.0, -1.0 ) ];
// Create a new complex number array by scaling the source array:
var arr = Complex64Array.from( src, map );
// returns <Complex64Array>
var len = arr.length;
// returns 1
var z = arr.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 2.0
var im = imagf( z );
// returns -2.0
or an array-like object containing real and imaginary components
javascript
var Float32Array = require( '@stdlib/array-float32' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
// Return a callback which reuses allocated memory...
function mapFcn() {
var buf = new Float32Array( 2 );
return map;
function map( z ) {
buf[ 0 ] = realf( z ) * 2.0;
buf[ 1 ] = imagf( z ) * 2.0;
return buf;
}
}
// Create a source array:
var src = [ new Complex64( 1.0, -1.0 ), new Complex64( 2.0, -2.0 ) ];
// Create a new complex number array by scaling the source array:
var arr = Complex64Array.from( src, mapFcn() );
// returns <Complex64Array>
var len = arr.length;
// returns 2
var z = arr.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 2.0
var im = imagf( z );
// returns -2.0
z = arr.get( 1 );
// returns <Complex64>
re = realf( z );
// returns 4.0
im = imagf( z );
// returns -4.0
If src
is an array-like object containing interleaved real and imaginary components, the callback is invoked for each component and should return the transformed component value.
javascript
var Float32Array = require( '@stdlib/array-float32' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function map( v ) {
return v * 2.0;
}
// Create a source array:
var src = new Float32Array( [ 1.0, -1.0 ] );
// Create a new complex number array by scaling the source array:
var arr = Complex64Array.from( src, map );
// returns <Complex64Array>
var len = arr.length;
// returns 1
var z = arr.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 2.0
var im = imagf( z );
// returns -2.0
A callback function is provided two arguments:
- value: source value.
- index: source index.
To set the callback execution context, provide a thisArg
.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function map( z ) {
this.count += 1;
return new Complex64( realf(z)*2.0, imagf(z)*2.0 );
}
// Create a source array:
var src = [ new Complex64( 1.0, -1.0 ), new Complex64( 1.0, -1.0 ) ];
// Define an execution context:
var ctx = {
'count': 0
};
// Create a new complex number array by scaling the source array:
var arr = Complex64Array.from( src, map, ctx );
// returns <Complex64Array>
var len = arr.length;
// returns 2
var n = ctx.count;
// returns 2
#### Complex64Array.of( element0[, element1[, ...elementN]] )
Creates a new 64-bit complex number array from a variable number of arguments.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var arr = Complex64Array.of( 1.0, -1.0, 2.0, -2.0 );
// returns <Complex64Array>
var len = arr.length;
// returns 2
var z1 = new Complex64( 1.0, -1.0 );
var z2 = new Complex64( 2.0, -2.0 );
arr = Complex64Array.of( z1, z2 );
// returns <Complex64Array>
len = arr.length;
// returns 2
#### Complex64Array.prototype.at( i )
Returns an array element located at integer position (index) i
, with support for both nonnegative and negative integer positions.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( 10 );
// Set the first, second, and last elements:
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
arr.set( [ 9.0, -9.0 ], 9 );
// Get the first element:
var z = arr.at( 0 );
// returns <Complex64>
var re = realf( z );
// returns 1.0
var im = imagf( z );
// returns -1.0
// Get the last element:
z = arr.at( -1 );
// returns <Complex64>
re = realf( z );
// returns 9.0
im = imagf( z );
// returns -9.0
If provided an out-of-bounds index, the method returns undefined
.
javascript
var arr = new Complex64Array( 10 );
var z = arr.at( 100 );
// returns undefined
z = arr.at( -100 );
// returns undefined
#### Complex64Array.prototype.copyWithin( target, start[, end] )
Copies a sequence of elements within the array starting at start
and ending at end
(non-inclusive) to the position starting at target
.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( 4 );
// Set the array elements:
arr.set( new Complex64( 1.0, -1.0 ), 0 );
arr.set( new Complex64( 2.0, -2.0 ), 1 );
arr.set( new Complex64( 3.0, -3.0 ), 2 );
arr.set( new Complex64( 4.0, -4.0 ), 3 );
// Get the first array element:
var z = arr.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 1.0
var im = imagf( z );
// returns -1.0
// Get the second array element:
z = arr.get( 1 );
// returns <Complex64>
re = realf( z );
// returns 2.0
im = imagf( z );
// returns -2.0
// Copy the last two elements to the first two elements:
arr.copyWithin( 0, 2 );
// Get the first array element:
z = arr.get( 0 );
// returns <Complex64>
re = realf( z );
// returns 3.0
im = imagf( z );
// returns -3.0
// Get the second array element:
z = arr.get( 1 );
// returns <Complex64>
re = realf( z );
// returns 4.0
im = imagf( z );
// returns -4.0
By default, end
equals the number of array elements (i.e., one more than the last array index). To limit the sequence length, provide an end
argument.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( 4 );
// Set the array elements:
arr.set( new Complex64( 1.0, -1.0 ), 0 );
arr.set( new Complex64( 2.0, -2.0 ), 1 );
arr.set( new Complex64( 3.0, -3.0 ), 2 );
arr.set( new Complex64( 4.0, -4.0 ), 3 );
// Get the third array element:
var z = arr.get( 2 );
// returns <Complex64>
var re = realf( z );
// returns 3.0
var im = imagf( z );
// returns -3.0
// Get the last array element:
z = arr.get( 3 );
// returns <Complex64>
re = realf( z );
// returns 4.0
im = imagf( z );
// returns -4.0
// Copy the first two elements to the last two elements:
arr.copyWithin( 2, 0, 2 );
// Get the third array element:
z = arr.get( 2 );
// returns <Complex64>
re = realf( z );
// returns 1.0
im = imagf( z );
// returns -1.0
// Get the last array element:
z = arr.get( 3 );
// returns <Complex64>
re = realf( z );
// returns 2.0
im = imagf( z );
// returns -2.0
When a target
, start
, and/or end
index is negative, the respective index is determined relative to the last array element. The following example achieves the same behavior as the previous example:
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( 4 );
// Set the array elements:
arr.set( new Complex64( 1.0, -1.0 ), 0 );
arr.set( new Complex64( 2.0, -2.0 ), 1 );
arr.set( new Complex64( 3.0, -3.0 ), 2 );
arr.set( new Complex64( 4.0, -4.0 ), 3 );
// Get the third array element:
var z = arr.get( 2 );
// returns <Complex64>
var re = realf( z );
// returns 3.0
var im = imagf( z );
// returns -3.0
// Get the last array element:
z = arr.get( 3 );
// returns <Complex64>
re = realf( z );
// returns 4.0
im = imagf( z );
// returns -4.0
// Copy the first two elements to the last two elements using negative indices:
arr.copyWithin( -2, -4, -2 );
// Get the third array element:
z = arr.get( 2 );
// returns <Complex64>
re = realf( z );
// returns 1.0
im = imagf( z );
// returns -1.0
// Get the last array element:
z = arr.get( 3 );
// returns <Complex64>
re = realf( z );
// returns 2.0
im = imagf( z );
// returns -2.0
#### Complex64Array.prototype.entries()
Returns an iterator for iterating over array key-value pairs.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = [
new Complex64( 1.0, -1.0 ),
new Complex64( 2.0, -2.0 ),
new Complex64( 3.0, -3.0 )
];
arr = new Complex64Array( arr );
// Create an iterator:
var it = arr.entries();
// Iterate over the key-value pairs...
var v = it.next().value;
// returns [ 0, <Complex64> ]
var re = realf( v[ 1 ] );
// returns 1.0
var im = imagf( v[ 1 ] );
// returns -1.0
v = it.next().value;
// returns [ 1, <Complex64> ]
re = realf( v[ 1 ] );
// returns 2.0
im = imagf( v[ 1 ] );
// returns -2.0
v = it.next().value;
// returns [ 2, <Complex64> ]
re = realf( v[ 1 ] );
// returns 3.0
im = imagf( v[ 1 ] );
// returns -3.0
var bool = it.next().done;
// returns true
The returned [iterator][mdn-iterator-protocol] protocol-compliant object has the following properties:
- next: function which returns an [iterator][mdn-iterator-protocol] protocol-compliant object containing the next iterated value (if one exists) assigned to a value
property and a done
property having a boolean
value indicating whether the [iterator][mdn-iterator-protocol] is finished.
- return: function which closes an [iterator][mdn-iterator-protocol] and returns a single (optional) argument in an [iterator][mdn-iterator-protocol] protocol-compliant object.
#### Complex64Array.prototype.every( predicate[, thisArg] )
Returns a boolean indicating whether all elements pass a test.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function predicate( v ) {
return ( realf( v ) === imagf( v ) );
}
var arr = new Complex64Array( 3 );
// Set the first three elements:
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
// Check whether all elements pass a test:
var z = arr.every( predicate );
// returns true
The predicate
function is provided three arguments:
- value: current array element.
- index: current array element index.
- arr: the array on which this method was called.
To set the function execution context, provide a thisArg
.
javascript
function predicate( v, i ) {
this.count += 1;
return ( i >= 0 );
}
var arr = new Complex64Array( 3 );
var context = {
'count': 0
};
// Set the first three elements:
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var z = arr.every( predicate, context );
// returns true
var count = context.count;
// returns 3
#### Complex64Array.prototype.fill( value[, start[, end]] )
Returns a modified typed array filled with a fill value.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( 3 );
// Set all elements to the same value:
arr.fill( new Complex64( 1.0, 1.0 ) );
var z = arr.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 1.0
var im = imagf( z );
// returns 1.0
z = arr.get( 2 );
// returns <Complex64>
re = realf( z );
// returns 1.0
im = imagf( z );
// returns 1.0
// Fill all elements starting from the second element:
arr.fill( new Complex64( 2.0, 2.0 ), 1 );
z = arr.get( 1 );
// returns <Complex64>
re = realf( z );
// returns 2.0
im = imagf( z );
// returns 2.0
z = arr.get( 2 );
// returns <Complex64>
re = realf( z );
// returns 2.0
im = imagf( z );
// returns 2.0
// Fill all elements from first element until the second-to-last element:
arr.fill( new Complex64( 3.0, 3.0 ), 0, 2 );
z = arr.get( 0 );
// returns <Complex64>
re = realf( z );
// returns 3.0
im = imagf( z );
// returns 3.0
z = arr.get( 1 );
// returns <Complex64>
re = realf( z );
// returns 3.0
im = imagf( z );
// returns 3.0
When a start
and/or end
index is negative, the respective index is determined relative to the last array element.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( 3 );
// Set all array elements, except the last element, to the same value:
arr.fill( new Complex64( 1.0, 1.0 ), 0, -1 );
var z = arr.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 1.0
var im = imagf( z );
// returns 1.0
z = arr.get( arr.length - 1 );
// returns <Complex64>
re = realf( z );
// returns 0.0
im = imagf( z );
// returns 0.0
#### Complex64Array.prototype.filter( predicate[, thisArg] )
Returns a new array containing the elements of an array which pass a test implemented by a predicate function.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function predicate( v ) {
return ( realf( v ) === imagf( v ) );
}
var arr = new Complex64Array( 3 );
// Set the first three elements:
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, -3.0 ], 2 );
var out = arr.filter( predicate );
// returns <Complex64Array>
var len = out.length;
// returns 1
var z = out.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 2.0
var im = imagf( z );
// returns 2.0
The predicate
function is provided three arguments:
- value: current array element.
- index: current array element index.
- arr: the array on which this method was called.
To set the function execution context, provide a thisArg
.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function predicate( v, i ) {
this.count += 1;
return ( i >= 0 && realf( v ) === imagf( v ) );
}
var arr = new Complex64Array( 3 );
var context = {
'count': 0
};
// Set the first three elements:
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var out = arr.filter( predicate, context );
// returns <Complex64Array>
var len = out.length;
// returns 2
var count = context.count;
// returns 3
#### Complex64Array.prototype.find( predicate[, thisArg] )
Returns the first element in an array for which a predicate function returns a truthy value.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
function predicate( v ) {
return ( realf( v ) === imagf( v ) );
}
var arr = new Complex64Array( 3 );
// Set the first three elements:
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var z = arr.find( predicate );
// returns <Complex64>
var re = realf( z );
// returns 1.0
var im = imagf( z );
// returns 1.0
The predicate
function is provided three arguments:
- value: current array element.
- index: current array element index.
- arr: the array on which this method was called.
To set the function execution context, provide a thisArg
.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function predicate( v, i ) {
this.count += 1;
return ( i >= 0 && realf( v ) === imagf( v ) );
}
var arr = new Complex64Array( 3 );
var context = {
'count': 0
};
// Set the first three elements:
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var z = arr.find( predicate, context );
// returns <Complex64>
var re = realf( z );
// returns 2.0
var im = imagf( z );
// returns 2.0
var count = context.count;
// returns 2
#### Complex64Array.prototype.findIndex( predicate[, thisArg] )
Returns the index of the first element in an array for which a predicate function returns a truthy value.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function predicate( v ) {
return ( realf( v ) === imagf( v ) );
}
var arr = new Complex64Array( 3 );
// Set the first three elements:
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var idx = arr.findIndex( predicate );
// returns 2
The predicate
function is provided three arguments:
- value: current array element.
- index: current array element index.
- arr: the array on which this method was called.
To set the function execution context, provide a thisArg
.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function predicate( v, i ) {
this.count += 1;
return ( i >= 0 && realf( v ) === imagf( v ) );
}
var arr = new Complex64Array( 3 );
var context = {
'count': 0
};
// Set the first three elements:
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
arr.set( [ 3.0, -3.0 ], 2 );
var idx = arr.findIndex( predicate, context );
// returns -1
var count = context.count;
// returns 3
#### Complex64Array.prototype.findLast( predicate[, thisArg] )
Returns the last element in an array for which a predicate function returns a truthy value.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
function predicate( v ) {
return ( realf( v ) === imagf( v ) );
}
var arr = new Complex64Array( 3 );
// Set the first three elements:
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var z = arr.findLast( predicate );
// returns <Complex64>
var re = realf( z );
// returns 3.0
var im = imagf( z );
// returns 3.0
The predicate
function is provided three arguments:
- value: current array element.
- index: current array element index.
- arr: the array on which this method was called.
To set the function execution context, provide a thisArg
.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function predicate( v, i ) {
this.count += 1;
return ( i >= 0 && realf( v ) === imagf( v ) );
}
var arr = new Complex64Array( 3 );
var context = {
'count': 0
};
// Set the first three elements:
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, -3.0 ], 2 );
var z = arr.findLast( predicate, context );
// returns <Complex64>
var re = realf( z );
// returns 2.0
var im = imagf( z );
// returns 2.0
var count = context.count;
// returns 2
#### Complex64Array.prototype.findLastIndex( predicate[, thisArg] )
Returns the index of the last element in an array for which a predicate function returns a truthy value.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function predicate( v ) {
return ( realf( v ) === imagf( v ) );
}
var arr = new Complex64Array( 3 );
// Set the first three elements:
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, -3.0 ], 2 );
var idx = arr.findLastIndex( predicate );
// returns 1
The predicate
function is provided three arguments:
- value: current array element.
- index: current array element index.
- arr: the array on which this method was called.
To set the function execution context, provide a thisArg
.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function predicate( v, i ) {
this.count += 1;
return ( i >= 0 && realf( v ) === imagf( v ) );
}
var arr = new Complex64Array( 3 );
var context = {
'count': 0
};
// Set the first three elements:
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
arr.set( [ 3.0, -3.0 ], 2 );
var idx = arr.findLastIndex( predicate, context );
// returns -1
var count = context.count;
// returns 3
#### Complex64Array.prototype.forEach( callbackFn[, thisArg] )
Invokes a function once for each array element.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
function log( v, i ) {
console.log( '%s: %s', i, v.toString() );
}
var arr = new Complex64Array( 3 );
// Set the first three elements:
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
arr.forEach( log );
/* =>
0: 1 + 1i
1: 2 + 2i
2: 3 + 3i
*/
The invoked function is provided three arguments:
- value: current array element.
- index: current array element index.
- arr: the array on which this method was called.
To set the function execution context, provide a thisArg
.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
function fcn( v, i ) {
this.count += 1;
console.log( '%s: %s', i, v.toString() );
}
var arr = new Complex64Array( 3 );
var context = {
'count': 0
};
// Set the first three elements:
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
arr.set( [ 3.0, -3.0 ], 2 );
arr.forEach( fcn, context );
/* =>
0: 1 + 1i
1: 2 + 2i
2: 3 + 3i
*/
var count = context.count;
// returns 3
#### Complex64Array.prototype.get( i )
Returns an array element located at a nonnegative integer position (index) i
.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( 10 );
// Set the first element:
arr.set( [ 1.0, -1.0 ], 0 );
// Get the first element:
var z = arr.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 1.0
var im = imagf( z );
// returns -1.0
If provided an out-of-bounds index, the method returns undefined
.
javascript
var arr = new Complex64Array( 10 );
var z = arr.get( 100 );
// returns undefined
#### Complex64Array.prototype.includes( searchElement[, fromIndex] )
Returns a boolean indicating whether an array includes a provided value.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var arr = new Complex64Array( 5 );
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
arr.set( [ 3.0, -3.0 ], 2 );
arr.set( [ 4.0, -4.0 ], 3 );
arr.set( [ 5.0, -5.0 ], 4 );
var bool = arr.includes( new Complex64( 3.0, -3.0 ) );
// returns true
bool = arr.includes( new Complex64( 3.0, -3.0 ), 3 );
// returns false
bool = arr.includes( new Complex64( 4.0, -4.0 ), -3 );
// returns true
#### Complex64Array.prototype.indexOf( searchElement[, fromIndex] )
Returns the first index at which a given element can be found.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var arr = new Complex64Array( 5 );
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
arr.set( [ 3.0, -3.0 ], 2 );
arr.set( [ 4.0, -4.0 ], 3 );
arr.set( [ 2.0, -2.0 ], 4 );
var idx = arr.indexOf( new Complex64( 3.0, -3.0 ) );
// returns 2
idx = arr.indexOf( new Complex64( 2.0, -2.0 ), 2 );
// returns 4
idx = arr.indexOf( new Complex64( 4.0, -4.0 ), -3 );
// returns 3
If searchElement
is not present in the array, the method returns -1
.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var arr = new Complex64Array( 10 );
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
var idx = arr.indexOf( new Complex64( 3.0, -3.0 ) );
// returns -1
idx = arr.indexOf( new Complex64( 1.0, -1.0 ), 1 );
// returns -1
#### Complex64Array.prototype.join( [separator] )
Returns a new string by concatenating all array elements.
javascript
var arr = new Complex64Array( 3 );
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var str = arr.join();
// returns '1 + 1i,2 - 2i,3 + 3i'
By default, the method separates serialized array elements with a comma. To use an alternative separator, provide a separator
string.
javascript
var arr = new Complex64Array( 3 );
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var str = arr.join( '/' );
// returns '1 + 1i/2 - 2i/3 + 3i'
#### Complex64Array.prototype.keys()
Returns an iterator for iterating over each index key in a typed array.
javascript
var arr = new Complex64Array( 2 );
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
var iter = arr.keys();
var v = iter.next().value;
// returns 0
v = iter.next().value;
// returns 1
var bool = iter.next().done;
// returns true
The returned [iterator][mdn-iterator-protocol] protocol-compliant object has the following properties:
- next: function which returns an [iterator][mdn-iterator-protocol] protocol-compliant object containing the next iterated value (if one exists) assigned to a value
property and a done
property having a boolean
value indicating whether the [iterator][mdn-iterator-protocol] is finished.
- return: function which closes an [iterator][mdn-iterator-protocol] and returns a single (optional) argument in an [iterator][mdn-iterator-protocol] protocol-compliant object.
#### Complex64Array.prototype.lastIndexOf( searchElement[, fromIndex] )
Returns the last index at which a given element can be found.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var arr = new Complex64Array( 5 );
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
arr.set( [ 3.0, -3.0 ], 2 );
arr.set( [ 4.0, -4.0 ], 3 );
arr.set( [ 2.0, -2.0 ], 4 );
var idx = arr.lastIndexOf( new Complex64( 3.0, -3.0 ) );
// returns 2
idx = arr.lastIndexOf( new Complex64( 2.0, -2.0 ), 2 );
// returns 1
idx = arr.lastIndexOf( new Complex64( 4.0, -4.0 ), -1 );
// returns 3
If searchElement
is not present in the array, the method returns -1
.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var arr = new Complex64Array( 10 );
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
var idx = arr.lastIndexOf( new Complex64( 3.0, -3.0 ) );
// returns -1
idx = arr.lastIndexOf( new Complex64( 2.0, -2.0 ), 0 );
// returns -1
#### Complex64Array.prototype.map( callbackFn[, thisArg] )
Returns a new array with each element being the result of a provided callback function.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function scale( v ) {
return new Complex64( 2.0*realf( v ), 2.0*imagf( v ) );
}
var arr = new Complex64Array( 3 );
// Set the first three elements:
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
arr.set( [ 3.0, -3.0 ], 2 );
var out = arr.map( scale );
// returns <Complex64Array>
var z = out.get( 0 );
// returns <complex64>
var re = realf( z );
// returns 2.0
var im = imagf( z );
// returns -2.0
The callback function is provided three arguments:
- value: current array element.
- index: current array element index.
- arr: the array on which this method was called.
To set the function execution context, provide a thisArg
.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function scale( v ) {
this.count += 1;
return new Complex64( 2.0*realf( v ), 2.0*imagf( v ) );
}
var arr = new Complex64Array( 3 );
var context = {
'count': 0
};
// Set the first three elements:
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var out = arr.map( scale, context );
// returns <Complex64Array>
var count = context.count;
// returns 3
#### Complex64Array.prototype.reduce( reducerFn[, initialValue] )
Applies a provided callback function to each element of the array, in order, passing in the return value from the calculation on the preceding element and returning the accumulated result upon completion.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var caddf = require( '@stdlib/complex-float32-base-add' );
var arr = new Complex64Array( 3 );
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var z = arr.reduce( caddf );
// returns <Complex64>
var re = realf( z );
// returns 6.0
var im = imagf( z );
// returns 6.0
The reducer function is provided four arguments:
- acc: accumulated result.
- value: current array element.
- index: current array element index.
- arr: the array on which this method was called.
By default, the function initializes the accumulated result to the first element in the array and passes the second array element as value
during the first invocation of the provided callback. To begin accumulation from a different starting value and pass in the first array element as value
during the first invocation of the provided callback, provide an initialValue
argument.
javascript
var realf = require( '@stdlib/complex-float32-real' );
function reducer( acc, v ) {
acc += realf( v );
return acc;
}
var arr = new Complex64Array( 3 );
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var z = arr.reduce( reducer, 0.0 );
// returns 6.0
#### Complex64Array.prototype.reduceRight( reducerFn[, initialValue] )
Applies a provided callback function to each element of the array, in reverse order, passing in the return value from the calculation on the following element and returning the accumulated result upon completion.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var caddf = require( '@stdlib/complex-float32-base-add' );
var arr = new Complex64Array( 3 );
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var z = arr.reduceRight( caddf );
// returns <Complex64>
var re = realf( z );
// returns 6.0
var im = imagf( z );
// returns 6.0
The reducer function is provided four arguments:
- acc: accumulated result.
- value: current array element.
- index: current array element index.
- arr: the array on which this method was called.
By default, the function initializes the accumulated result to the last element in the array and passes the second-last array element as value
during the first invocation of the provided callback. To begin accumulation from a different starting value and pass in the last array element as value
during the first invocation of the provided callback, provide an initialValue
argument.
javascript
var realf = require( '@stdlib/complex-float32-real' );
function reducer( acc, v ) {
acc += realf( v );
return acc;
}
var arr = new Complex64Array( 3 );
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var z = arr.reduceRight( reducer, 0.0 );
// returns 6.0
#### Complex64Array.prototype.reverse()
Reverses an array in-place.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( 3 );
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var out = arr.reverse();
// returns <Complex64Array>
var z = out.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 3.0
var im = imagf( z );
// returns 3.0
z = out.get( 1 );
// returns <Complex64>
re = realf( z );
// returns 2.0
im = imagf( z );
// returns 2.0
z = out.get( 2 );
// returns <Complex64>
re = realf( z );
// returns 1.0
im = imagf( z );
// returns 1.0
#### Complex64Array.prototype.set( z[, i] )
Sets one or more array elements.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( 10 );
// Get the first element:
var z = arr.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 0.0
var im = imagf( z );
// returns 0.0
// Set the first element:
arr.set( new Complex64( 1.0, -1.0 ) );
// Get the first element:
z = arr.get( 0 );
// returns <Complex64>
re = realf( z );
// returns 1.0
im = imagf( z );
// returns -1.0
By default, the method sets array elements starting at position (index) i = 0
. To set elements starting elsewhere in the array, provide an index argument i
.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( 10 );
// Get the fifth element:
var z = arr.get( 4 );
// returns <Complex64>
var re = realf( z );
// returns 0.0
var im = imagf( z );
// returns 0.0
// Set the fifth element:
arr.set( new Complex64( 1.0, -1.0 ), 4 );
// Get the fifth element:
z = arr.get( 4 );
// returns <Complex64>
re = realf( z );
// returns 1.0
im = imagf( z );
// returns -1.0
In addition to providing a complex number, to set one or more array elements, provide an array-like object containing either complex numbers
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( 10 );
// Define an array of complex numbers:
var buf = [
new Complex64( 1.0, -1.0 ),
new Complex64( 2.0, -2.0 ),
new Complex64( 3.0, -3.0 )
];
// Set the fifth, sixth, and seventh elements:
arr.set( buf, 4 );
// Get the sixth element:
var z = arr.get( 5 );
// returns <Complex64>
var re = realf( z );
// returns 2.0
var im = imagf( z );
// returns -2.0
or interleaved real and imaginary components
javascript
var Float32Array = require( '@stdlib/array-float32' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( 10 );
// Define an interleaved array of real and imaginary components:
var buf = new Float32Array( [ 1.0, -1.0, 2.0, -2.0, 3.0, -3.0 ] );
// Set the fifth, sixth, and seventh elements:
arr.set( buf, 4 );
// Get the sixth element:
var z = arr.get( 5 );
// returns <Complex64>
var re = realf( z );
// returns 2.0
var im = imagf( z );
// returns -2.0
A few notes:
- If i
is out-of-bounds, the method throws an error.
- If a target array cannot accommodate all values (i.e., the length of source array plus i
exceeds the target array length), the method throws an error.
- If provided a [typed array][@stdlib/array/typed] which shares an [ArrayBuffer
][@stdlib/array/buffer] with the target array, the method will intelligently copy the source range to the destination range.
#### Complex64Array.prototype.slice( [start[, end]] )
Copies a portion of a typed array to a new typed array.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var out = arr.slice();
// returns <Complex64Array>
var len = out.length;
// returns 4
var z = out.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 1.0
var im = imagf( z );
// returns 2.0
z = out.get( len-1 );
// returns <Complex64>
re = realf( z );
// returns 7.0
im = imagf( z );
// returns 8.0
By default, the method returns a typed array beginning with the first array element. To specify an alternative array index at which to begin, provide a start
index (inclusive).
javascript
var imagf = require( '@stdlib/complex-float32-imag' );
var realf = require( '@stdlib/complex-float32-real' );
var arr = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var out = arr.slice( 1 );
// returns <Complex64Array>
var len = out.length;
// returns 3
var z = out.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 3.0
var im = imagf( z );
// returns 4.0
By default, the method returns a typed array which includes all array elements after start
. To limit the number of array elements after start
, provide an end
index (exclusive).
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var out = arr.slice( 1, -1 );
// returns <Complex64Array>
var len = out.length;
// returns 2
var z = out.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 3.0
var im = imagf( z );
// returns 4.0
z = out.get( len-1 );
// returns <Complex64>
re = realf( z );
// returns 5.0
im = imagf( z );
// returns 6.0
#### Complex64Array.prototype.some( predicate[, thisArg] )
Returns a boolean indicating whether at least one element passes a test.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function predicate( v ) {
return ( realf( v ) === imagf( v ) );
}
var arr = new Complex64Array( 3 );
// Set the first three elements:
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, -3.0 ], 2 );
// Check whether at least one element passes a test:
var z = arr.some( predicate );
// returns true
The predicate
function is provided three arguments:
- value: current array element.
- index: current array element index.
- arr: the array on which this method was called.
To set the function execution context, provide a thisArg
.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function predicate( v, i ) {
this.count += 1;
return ( imagf( v ) === realf( v ) );
}
var arr = new Complex64Array( 3 );
var context = {
'count': 0
};
// Set the first three elements:
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, -3.0 ], 2 );
var z = arr.some( predicate, context );
// returns true
var count = context.count;
// returns 2
#### Complex64Array.prototype.sort( compareFcn )
Sorts an array in-place.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function compare( a, b ) {
var re1;
var re2;
var im1;
var im2;
re1 = realf( a );
re2 = realf( b );
if ( re1 < re2 ) {
return -1;
}
if ( re1 > re2 ) {
return 1;
}
im1 = imagf( a );
im2 = imagf( b );
if ( im1 < im2 ) {
return -1;
}
if ( im1 > im2 ) {
return 1;
}
return 0;
}
var arr = new Complex64Array( 3 );
arr.set( [ 3.0, -3.0 ], 0 );
arr.set( [ 1.0, -1.0 ], 1 );
arr.set( [ 2.0, -2.0 ], 2 );
var out = arr.sort( compare );
// returns <Complex64Array>
var z = out.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 1.0
var im = imagf( z );
// returns -1.0
z = out.get( 1 );
// returns <Complex64>
re = realf( z );
// returns 2.0
im = imagf( z );
// returns -2.0
z = out.get( 2 );
// returns <Complex64>
re = realf( z );
// returns 3.0
im = imagf( z );
// returns -3.0
The compareFcn
determines the order of the elements. The function is called with the following arguments:
- a: the first element for comparison.
- b: the second element for comparison.
The function should return a number where:
- a negative value indicates that a
should come before b
.
- a positive value indicates that a
should come after b
.
- zero or NaN
indicates that a
and b
are considered equal.
In contrast to real numbers, one cannot define a default order relation which is compatible with multiplication. Accordingly, users must explicitly provide a compareFcn
argument and are thus responsible for specifying a complex number ordering.
#### Complex64Array.prototype.subarray( [begin[, end]] )
Creates a new typed array view over the same underlying [ArrayBuffer
][@stdlib/array/buffer] and with the same underlying data type as the host array.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var subarr = arr.subarray();
// returns <Complex64Array>
var len = subarr.length;
// returns 4
var z = subarr.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 1.0
var im = imagf( z );
// returns 2.0
z = subarr.get( len-1 );
// returns <Complex64>
re = realf( z );
// returns 7.0
im = imagf( z );
// returns 8.0
By default, the method creates a typed array view beginning with the first array element. To specify an alternative array index at which to begin, provide a begin
index (inclusive).
javascript
var imagf = require( '@stdlib/complex-float32-imag' );
var realf = require( '@stdlib/complex-float32-real' );
var arr = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var subarr = arr.subarray( 1 );
// returns <Complex64Array>
var len = subarr.length;
// returns 3
var z = subarr.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 3.0
var im = imagf( z );
// returns 4.0
By default, the method creates a typed array view which includes all array elements after begin
. To limit the number of array elements after begin
, provide an end
index (exclusive).
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var subarr = arr.subarray( 1, -1 );
// returns <Complex64Array>
var len = subarr.length;
// returns 2
var z = subarr.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 3.0
var im = imagf( z );
// returns 4.0
z = subarr.get( len-1 );
// returns <Complex64>
re = realf( z );
// returns 5.0
im = imagf( z );
// returns 6.0
#### Complex64Array.prototype.toLocaleString( [locales[, options]] )
Serializes an array as a locale-specific string.
javascript
var arr = new Complex64Array( 2 );
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
var str = arr.toLocaleString();
// returns '1 + 1i,2 + 2i'
The method supports the following arguments:
- locales: a string with a BCP 47 language tag or an array of such strings.
- options: configuration properties.
#### Complex64Array.prototype.toReversed()
Returns a new typed array containing the elements in reversed order.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( 3 );
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var out = arr.toReversed();
// returns <Complex64Array>
var z = out.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 3.0
var im = imagf( z );
// returns 3.0
z = out.get( 1 );
// returns <Complex64>
re = realf( z );
// returns 2.0
im = imagf( z );
// returns 2.0
z = out.get( 2 );
// returns <Complex64>
re = realf( z );
// returns 1.0
im = imagf( z );
// returns 1.0
#### Complex64Array.prototype.toSorted( compareFcn )
Returns a new typed array containing the elements in sorted order.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
function compare( a, b ) {
var re1;
var re2;
var im1;
var im2;
re1 = realf( a );
re2 = realf( b );
if ( re1 < re2 ) {
return -1;
}
if ( re1 > re2 ) {
return 1;
}
im1 = imagf( a );
im2 = imagf( b );
if ( im1 < im2 ) {
return -1;
}
if ( im1 > im2 ) {
return 1;
}
return 0;
}
var arr = new Complex64Array( 3 );
arr.set( [ 3.0, -3.0 ], 0 );
arr.set( [ 1.0, -1.0 ], 1 );
arr.set( [ 2.0, -2.0 ], 2 );
var out = arr.toSorted( compare );
// returns <Complex64Array>
var z = out.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 1.0
var im = imagf( z );
// returns -1.0
z = out.get( 1 );
// returns <Complex64>
re = realf( z );
// returns 2.0
im = imagf( z );
// returns -2.0
z = out.get( 2 );
// returns <Complex64>
re = realf( z );
// returns 3.0
im = imagf( z );
// returns -3.0
The compareFcn
determines the order of the elements. The function is called with the following arguments:
- a: the first element for comparison.
- b: the second element for comparison.
The function should return a number where:
- a negative value indicates that a
should come before b
.
- a positive value indicates that a
should come after b
.
- zero or NaN
indicates that a
and b
are considered equal.
In contrast to real numbers, one cannot define a default order relation which is compatible with multiplication. Accordingly, users must explicitly provide a compareFcn
argument and are thus responsible for specifying a complex number ordering.
#### Complex64Array.prototype.toString()
Serializes an array as a string.
javascript
var arr = new Complex64Array( 3 );
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 2 );
var str = arr.toString();
// returns '1 + 1i,2 - 2i,3 + 3i'
#### Complex64Array.prototype.values()
Returns an iterator for iterating over each value in a typed array.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var arr = new Complex64Array( 2 );
arr.set( [ 1.0, -1.0 ], 0 );
arr.set( [ 2.0, -2.0 ], 1 );
var iter = arr.values();
var v = iter.next().value;
// returns <Complex64>
var re = realf( v );
// returns 1.0
var im = imagf( v );
// returns -1.0
v = iter.next().value;
// returns <Complex64>
re = realf( v );
// returns 2.0
im = imagf( v );
// returns -2.0
var bool = iter.next().done;
// returns true
The returned [iterator][mdn-iterator-protocol] protocol-compliant object has the following properties:
- next: function which returns an [iterator][mdn-iterator-protocol] protocol-compliant object containing the next iterated value (if one exists) assigned to a value
property and a done
property having a boolean
value indicating whether the [iterator][mdn-iterator-protocol] is finished.
- return: function which closes an [iterator][mdn-iterator-protocol] and returns a single (optional) argument in an [iterator][mdn-iterator-protocol] protocol-compliant object.
#### Complex64Array.prototype.with( index, value )
Returns a new typed array with the element at a provided index replaced with a provided value.
javascript
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var arr = new Complex64Array( 3 );
arr.set( [ 1.0, 1.0 ], 0 );
arr.set( [ 2.0, 2.0 ], 1 );
arr.set( [ 3.0, 3.0 ], 1 );
var out = arr.with( 0, new Complex64( 4.0, 4.0 ) );
// returns <Complex64Array>
var z = out.get( 0 );
// returns <Complex64>
var re = realf( z );
// returns 4.0
var im = imagf( z );
// returns 4.0
Complex64Array
strives to maintain (but does not guarantee) consistency with [typed arrays][@stdlib/array/typed], significant deviations from ECMAScript-defined [typed array][@stdlib/array/typed] behavior are as follows:
- The constructor does not require the new
operator.
- The constructor and associated methods support a broader variety of input argument types in order to better accommodate complex number input.
- Accessing array elements using bracket syntax (e.g., Z[i]
) is not supported. Instead, one *must use the .get()
method which returns a value compatible with complex number output.
- The set
method has extended behavior in order to support complex numbers.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var Float32Array = require( '@stdlib/array-float32' );
var logEach = require( '@stdlib/console-log-each' );
var Complex64Array = require( '@stdlib/array-complex64' );
// Create a complex array by specifying a length:
var out = new Complex64Array( 3 );
logEach( '%s', out );
// Create a complex array from an array of complex numbers:
var arr = [
new Complex64( 1.0, -1.0 ),
new Complex64( -3.14, 3.14 ),
new Complex64( 0.5, 0.5 )
];
out = new Complex64Array( arr );
logEach( '%s', out );
// Create a complex array from an interleaved typed array:
arr = new Float32Array( [ 1.0, -1.0, -3.14, 3.14, 0.5, 0.5 ] );
out = new Complex64Array( arr );
logEach( '%s', out );
// Create a complex array from an array buffer:
arr = new Float32Array( [ 1.0, -1.0, -3.14, 3.14, 0.5, 0.5 ] );
out = new Complex64Array( arr.buffer );
logEach( '%s', out );
// Create a complex array from an array buffer view:
arr = new Float32Array( [ 1.0, -1.0, -3.14, 3.14, 0.5, 0.5 ] );
out = new Complex64Array( arr.buffer, 8, 2 );
logEach( '%s', out );
@stdlib/array-complex128
][@stdlib/array/complex128]: Complex128Array.
- [@stdlib/complex-cmplx
][@stdlib/complex/cmplx]: create a complex number.
- [@stdlib/complex-float32/ctor
][@stdlib/complex/float32/ctor]: 64-bit complex number.