We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
LOWESS
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Locally-weighted polynomial regression via the LOWESS algorithm.
bash
npm install @stdlib/stats-lowess
javascript
var lowess = require( '@stdlib/stats-lowess' );
#### lowess( x, y[, opts] )
For [input arrays][mdn-array] and/or [typed arrays][mdn-typed-array] x
and y
, the function returns an object holding the ordered input values x
and smoothed values for y
.
javascript
var x = [
4, 4, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14,
14, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20,
20, 20, 20, 20, 22, 23, 24, 24, 24, 24, 25
];
var y = [
2, 10, 4, 22, 16, 10, 18, 26, 34, 17, 28, 14, 20, 24, 28, 26, 34, 34, 46,
26, 36, 60, 80, 20, 26, 54, 32, 40, 32, 40, 50, 42, 56, 76, 84, 36, 46, 68,
32, 48, 52, 56, 64, 66, 54, 70, 92, 93, 120, 85
];
var out = lowess( x, y );
/* returns
{
'x': [
4,
4,
7,
7,
...,
24,
24,
24,
25
],
'y': [
~4.857,
~4.857,
~13.1037,
~13.1037,
...,
~79.102,
~79.102,
~79.102,
~84.825
]
}
*/
The function accepts the following options
:
- f: positive number
specifying the smoothing span, i.e., the proportion of points which influence smoothing at each value. Larger values correspond to more smoothing. Default: 2/3
.
- nsteps: number
of iterations in the robust fit (fewer iterations translates to faster function execution). If set to zero, the nonrobust fit is returned. Default: 3
.
- delta: nonnegative number
which may be used to reduce the number of computations. Default: 1/100th of the range of x
.
- sorted: boolean
indicating if the input array x
is sorted. Default: false
.
By default, smoothing at each value is determined by 2/3
of all other points. To choose a different smoothing span, set the f
option.
javascript
var x = [
4, 4, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14,
14, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20,
20, 20, 20, 20, 22, 23, 24, 24, 24, 24, 25
];
var y = [
2, 10, 4, 22, 16, 10, 18, 26, 34, 17, 28, 14, 20, 24, 28, 26, 34, 34, 46,
26, 36, 60, 80, 20, 26, 54, 32, 40, 32, 40, 50, 42, 56, 76, 84, 36, 46, 68,
32, 48, 52, 56, 64, 66, 54, 70, 92, 93, 120, 85
];
var out = lowess( x, y, {
'f': 0.2
});
/* returns
{
'x': [
4,
4,
7,
...,
24,
24,
25
],
'y': [
~6.03,
~6.03,
~12.68,
...,
~82.575,
~82.575,
~93.028
]
}
*/
By default, three iterations of locally weighted regression fits are calculated after the initial fit. To set a different number of iterations for the robust fit, set the nsteps
option.
javascript
var x = [
4, 4, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14,
14, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20,
20, 20, 20, 20, 22, 23, 24, 24, 24, 24, 25
];
var y = [
2, 10, 4, 22, 16, 10, 18, 26, 34, 17, 28, 14, 20, 24, 28, 26, 34, 34, 46,
26, 36, 60, 80, 20, 26, 54, 32, 40, 32, 40, 50, 42, 56, 76, 84, 36, 46, 68,
32, 48, 52, 56, 64, 66, 54, 70, 92, 93, 120, 85
];
var out = lowess( x, y, {
'nsteps': 20
});
/* returns
{
'x': [
4,
...,
25
],
'y': [
~4.857,
...,
~84.825
]
}
*/
To save computations, set the delta
option. For cases where one has a large number of (x,y)-pairs, carrying out regression calculations for all points is not likely to be necessary. By default, delta
is set to 1/100th of the range of the values in x
. In this case, if the values in x
were uniformly scattered over the entire range, the locally weighted regression would be calculated at approximately 100 points. On the other hand, for small data sets with less than 100 observations, one can safely set the option to zero so calculations are made for each data point.
javascript
var x = [
4, 4, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14,
14, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20,
20, 20, 20, 20, 22, 23, 24, 24, 24, 24, 25
];
var y = [
2, 10, 4, 22, 16, 10, 18, 26, 34, 17, 28, 14, 20, 24, 28, 26, 34, 34, 46,
26, 36, 60, 80, 20, 26, 54, 32, 40, 32, 40, 50, 42, 56, 76, 84, 36, 46, 68,
32, 48, 52, 56, 64, 66, 54, 70, 92, 93, 120, 85
];
var out = lowess( x, y, {
'delta': 0.0
});
/* returns
{
'x': [
4,
...,
25
],
'y': [
~4.857,
...,
~84.825
]
}
*/
If the elements of x
are sorted in ascending order, set the sorted
option to true
.
javascript
var x = [
4, 4, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14,
14, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20,
20, 20, 20, 20, 22, 23, 24, 24, 24, 24, 25
];
var y = [
2, 10, 4, 22, 16, 10, 18, 26, 34, 17, 28, 14, 20, 24, 28, 26, 34, 34, 46,
26, 36, 60, 80, 20, 26, 54, 32, 40, 32, 40, 50, 42, 56, 76, 84, 36, 46, 68,
32, 48, 52, 56, 64, 66, 54, 70, 92, 93, 120, 85
];
var out = lowess( x, y, {
'sorted': true
});
/* returns
{
'x': [
4,
...,
25
],
'y': [
~4.857,
...,
~84.825
]
}
*/
javascript
var randn = require( '@stdlib/random-base-randn' );
var Float64Array = require( '@stdlib/array-float64' );
var plot = require( '@stdlib/plot-ctor' );
var lowess = require( '@stdlib/stats-lowess' );
var x;
var y;
var i;
// Create some data...
x = new Float64Array( 100 );
y = new Float64Array( x.length );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = i;
y[ i ] = ( 0.5*i ) + ( 10.0*randn() );
}
var opts = {
'delta': 0
};
var out = lowess( x, y, opts );
var h = plot( [ x, out.x ], [ y, out.y ] );
h.lineStyle = [ 'none', '-' ];
h.symbols = [ 'closed-circle', 'none' ];
h.view( 'stdout' );