We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Quantile Function
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
[Beta][beta-distribution] distribution [quantile function][quantile-function].
0 <= p <= 1
, where alpha > 0
is the first shape parameter and beta > 0
is the second shape parameter and F(x;alpha,beta)
denotes the cumulative distribution function of a [beta][beta-distribution] random variable with parameters alpha
and beta
.
bash
npm install @stdlib/stats-base-dists-beta-quantile
javascript
var quantile = require( '@stdlib/stats-base-dists-beta-quantile' );
#### quantile( p, alpha, beta )
Evaluates the [quantile function][quantile-function] for a [beta][beta-distribution] distribution with parameters alpha
(first shape parameter) and beta
(second shape parameter).
javascript
var y = quantile( 0.8, 2.0, 1.0 );
// returns ~0.894
y = quantile( 0.5, 4.0, 2.0 );
// returns ~0.686
If provided a probability p
outside the interval [0,1]
, the function returns NaN
.
javascript
var y = quantile( 1.9, 1.0, 1.0 );
// returns NaN
y = quantile( -0.1, 1.0, 1.0 );
// returns NaN
If provided NaN
as any argument, the function returns NaN
.
javascript
var y = quantile( NaN, 1.0, 1.0 );
// returns NaN
y = quantile( 0.5, NaN, 1.0 );
// returns NaN
y = quantile( 0.5, 1.0, NaN );
// returns NaN
If provided alpha <= 0
, the function returns NaN
.
javascript
var y = quantile( 0.4, -1.0, 1.0 );
// returns NaN
y = quantile( 0.4, 0.0, 1.0 );
// returns NaN
If provided beta <= 0
, the function returns NaN
.
javascript
var y = quantile( 0.4, 1.0, -1.0 );
// returns NaN
y = quantile( 0.4, 1.0, 0.0 );
// returns NaN
#### quantile.factory( alpha, beta )
Returns a function for evaluating the [quantile function][quantile-function] of a [beta][beta-distribution] distribution with parameters alpha
(first shape parameter) and beta
(second shape parameter).
javascript
var myquantile = quantile.factory( 2.0, 2.0 );
var y = myquantile( 0.8 );
// returns ~0.713
y = myquantile( 0.4 );
// returns ~0.433
javascript
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var quantile = require( '@stdlib/stats-base-dists-beta-quantile' );
var alpha;
var beta;
var p;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
p = randu();
alpha = ( randu()*5.0 ) + EPS;
beta = ( randu()*5.0 ) + EPS;
y = quantile( p, alpha, beta );
console.log( 'p: %d, α: %d, β: %d, Q(p;α,β): %d', p.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
}