パッケージの詳細

@stdlib/math-base-special-gcd

stdlib-js25.4kApache-2.00.3.0

Compute the greatest common divisor (gcd).

stdlib, stdmath, math, mathematics

readme

<summary> About stdlib... </summary>

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

gcd

[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]

Compute the [greatest common divisor][gcd] (gcd).

The [greatest common divisor][gcd] (gcd) of two non-zero integers a and b is the largest positive integer which divides both a and b without a remainder. The gcd is also known as the greatest common factor (gcf), highest common factor (hcf), highest common divisor, and greatest common measure (gcm).
## Installation bash npm install @stdlib/math-base-special-gcd
## Usage javascript var gcd = require( '@stdlib/math-base-special-gcd' ); #### gcd( a, b ) Computes the [greatest common divisor][gcd] (gcd). javascript var v = gcd( 48, 18 ); // returns 6 If both a and b are 0, the function returns 0. javascript var v = gcd( 0, 0 ); // returns 0 Both a and b must have integer values; otherwise, the function returns NaN. javascript var v = gcd( 3.14, 18 ); // returns NaN v = gcd( 48, 3.14 ); // returns NaN v = gcd( NaN, 18 ); // returns NaN v = gcd( 48, NaN ); // returns NaN
## Examples javascript var discreteUniform = require( '@stdlib/random-array-discrete-uniform' ); var gcd = require( '@stdlib/math-base-special-gcd' ); var a = discreteUniform( 100, 0, 50 ); var b = discreteUniform( a.length, 0, 50 ); var i; for ( i = 0; i < a.length; i++ ) { console.log( 'gcd(%d,%d) = %d', a[ i ], b[ i ], gcd( a[ i ], b[ i ] ) ); }

## C APIs
### Usage c #include "stdlib/math/base/special/gcd.h" #### stdlib_base_gcd( a, b ) Computes the greatest common divisor (gcd). c double v = stdlib_base_gcd( 48.0, 18.0 ); // returns 6.0 The function accepts the following arguments: - a: [in] double input value. - b: [in] double input value. c double stdlib_base_gcd( const double a, const double b );
### Examples c #include "stdlib/math/base/special/gcd.h" #include <stdio.h> int main( void ) { const double a[] = { 24.0, 32.0, 48.0, 116.0, 33.0 }; const double b[] = { 12.0, 6.0, 15.0, 52.0, 22.0 }; double out; int i; for ( i = 0; i < 5; i++ ) { out = stdlib_base_gcd( a[ i ], b[ i ] ); printf( "gcd(%lf, %lf) = %lf\n", a[ i ], b[ i ], out ); } }

## References - Stein, Josef. 1967. "Computational problems associated with Racah algebra." Journal of Computational Physics 1 (3): 397–405. doi:[10.1016/0021-9991(67)90047-2][@stein:1967].
* ## See Also - [@stdlib/math-base/special/lcm][@stdlib/math/base/special/lcm]: compute the least common multiple (lcm).
* ## Notice This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more. For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib]. #### Community [![Chat][chat-image]][chat-url] --- ## License See [LICENSE][stdlib-license]. ## Copyright Copyright © 2016-2024. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/math-base-special-gcd.svg [npm-url]: https://npmjs.org/package/@stdlib/math-base-special-gcd [test-image]: https://github.com/stdlib-js/math-base-special-gcd/actions/workflows/test.yml/badge.svg?branch=v0.3.0 [test-url]: https://github.com/stdlib-js/math-base-special-gcd/actions/workflows/test.yml?query=branch:v0.3.0 [coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/math-base-special-gcd/main.svg [coverage-url]: https://codecov.io/github/stdlib-js/math-base-special-gcd?branch=main [chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg [chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im [stdlib]: https://github.com/stdlib-js/stdlib [stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors [umd]: https://github.com/umdjs/umd [es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules [deno-url]: https://github.com/stdlib-js/math-base-special-gcd/tree/deno [deno-readme]: https://github.com/stdlib-js/math-base-special-gcd/blob/deno/README.md [umd-url]: https://github.com/stdlib-js/math-base-special-gcd/tree/umd [umd-readme]: https://github.com/stdlib-js/math-base-special-gcd/blob/umd/README.md [esm-url]: https://github.com/stdlib-js/math-base-special-gcd/tree/esm [esm-readme]: https://github.com/stdlib-js/math-base-special-gcd/blob/esm/README.md [branches-url]: https://github.com/stdlib-js/math-base-special-gcd/blob/main/branches.md [stdlib-license]: https://raw.githubusercontent.com/stdlib-js/math-base-special-gcd/main/LICENSE [gcd]: https://en.wikipedia.org/wiki/Greatest_common_divisor [@stein:1967]: https://doi.org/10.1016/0021-9991(67)90047-2 [@stdlib/math/base/special/lcm]: https://www.npmjs.com/package/@stdlib/math-base-special-lcm