We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
reim
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
Return the real and imaginary components of a single-precision complex floating-point number.
bash
npm install @stdlib/complex-float32-reim
javascript
var reim = require( '@stdlib/complex-float32-reim' );
#### reim( z )
Returns the real and imaginary components of a single-precision complex floating-point number.
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var z = new Complex64( 5.0, 3.0 );
var out = reim( z );
// returns <Float32Array>[ 5.0, 3.0 ]
javascript
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var reim = require( '@stdlib/complex-float32-reim' );
function random() {
return new Complex64( discreteUniform( -10, 10 ), discreteUniform( -10, 10 ) );
}
// Generate an array of random complex numbers:
var x = filledarrayBy( 100, 'complex64', random );
// returns <Complex64Array>
// Return the real and imaginary components of each complex number...
var out;
var z;
var i;
for ( i = 0; i < x.length; i++ ) {
z = x.get( i );
out = reim( z );
console.log( '%s => %d, %d', z.toString(), out[ 0 ], out[ 1 ] );
}
c
#include "stdlib/complex/float32/reim.h"
#### stdlib_complex64_reim( z, *re, *im )
Returns the real and imaginary components of a single-precision complex floating-point number.
c
#include "stdlib/complex/float32/ctor.h"
stdlib_complex64_t z = stdlib_complex64( 5.0f, 2.0f );
// ...
float re;
float im;
stdlib_complex64_reim( z, &re, &im );
The function accepts the following arguments:
- z: [in] stdlib_complex64_t
single-precision complex floating-point number.
- re: [out] float*
destination for real component.
- im: [out] float*
destination for imaginary component.
c
void stdlib_complex64_reim( const stdlib_complex64_t z, float *re, float *im );
c
#include "stdlib/complex/float32/reim.h"
#include "stdlib/complex/float32/ctor.h"
#include <stdio.h>
int main( void ) {
const stdlib_complex64_t x[] = {
stdlib_complex64( 5.0f, 2.0f ),
stdlib_complex64( -2.0f, 1.0f ),
stdlib_complex64( 0.0f, -0.0f ),
stdlib_complex64( 0.0f/0.0f, 0.0f/0.0f )
};
float re;
float im;
int i;
for ( i = 0; i < 4; i++ ) {
stdlib_complex64_reim( x[ i ], &re, &im );
printf( "reim(v) = %f, %f\n", re, im );
}
}
@stdlib/complex-float32/imag
][@stdlib/complex/float32/imag]: return the imaginary component of a single-precision complex floating-point number.
- [@stdlib/complex-float32/real
][@stdlib/complex/float32/real]: return the real component of a single-precision complex floating-point number.
- [@stdlib/complex-float64/reim
][@stdlib/complex/float64/reim]: return the real and imaginary components of a double-precision complex floating-point number.